1clean-house.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Массовое водопоглощение керамического кирпича

Основные свойства строительных материалов

Лабораторная работа №6. Определение водопоглощения материалов

Цель работы: определение водопоглощения керамического кирпича. Оценка правильности полученных результатов.

I .Теоретическая часть.

Водопоглощение – свойство материала поглощать и удерживать воду при непосредственном контакте с ней. Водопоглощение может быть массовым и объемным:

Массовое водопоглощение – это отношение массы поглощенной материалом воды при стандартных условиях к массе сухого материала в %:

Объемное водопоглощение – это отношение объема поглощенной материалом воды при стандартных условиях к объему материала в сухом состоянии в %:

,

где B m – массовое водопоглощение, %;

B v – объемное водопоглощение, %;

m н — масса материала, насыщенного водой при стандартных условиях, г;

m – масса воздушно-сухого материала, г;

V – объем воздушно-сухого материала, см 3 ;

— объем поглощенной воды.

Соотношение между массовым и объемным водопоглощением:

; B v = dB m

II . Материалы и оборудование:

— торговые весы с разновесами;

— штангенциркуль и линейка;

III . Методика выполнения работы:

— высушить кирпичи (3 шт) до постоянной массы при температуре 105-110 0 С (разность результатов 2-х последовательных взвешиваний не более 0,2%). Взвешивание произвести после полного остывания кирпичей – m , г;

— измерить геометрические размеры кирпичей с точностью до 0,1 см;

— произвести насыщение кирпичей водой при температуре воды 15-20 0 С в течение 48 часов при уровне воды на 2-10 см выше верха кирпичей;

— обтерев кирпичи влажной тканью, немедленно взвесить их – m н , г.

Взвешивать с точностью до 1 г.

IV . Лабораторный журнал:

Масса кирпича, г

Геометрические размеры, см

Объем кирпича, см 3

Полученные результаты водопоглощения по массе ( ) и объему ( ) керамического кирпича лежат в пределах стандартных значений (требования ГОСТ приведены в приложении 1).

Лабораторная работа №7. Определение пористости материалов

Цель работы : определение пористости керамического кирпича. Оценка правильности полученных результатов.

I . Теоретическая часть.

Пористость – это доля заполнения объема материала порами. Общая пористость (или просто пористость) ( П о ):

,

где V пор – объем пор в материале, см 3 (м 3 );

V – объем материала в естественном состоянии, см 3 (м 3 );

V а – объем материала в абсолютно плотном состоянии (без пор), см 3 (м 3 );

— средняя плотность материала, г/см 3 (кг/м 3 );

— истинная плотность материала, г/см 3 (кг/м 3 ).

Пористость можно выразить и в процентах:

От величины пористости и ее характера зависят важнейшие свойства материала: плотность, прочность, теплопроводность, долговечность и др.

Пористость в материале характеризуется как открытыми, так и закрытыми порами.

Открытые поры увеличивают водопоглощение и водопроницаемость материала и ухудшают его морозостойкость.

Увеличение закрытой пористости за счет открытой увеличивает долговечность материала, снижает его теплопроводность.

Общая пористость складывается из открытой и закрытой. Открытая пористость численно равна объемному водопоглощению материала. Определив водопоглощение по объему и пористость материала, можно легко вычислить закрытую пористость:

, %

Коэффициент насыщения пор водой – отношение объемного водопоглощения к пористости:

Этот коэффициент изменяется от 0 (все поры в материале замкнуты) до 1 (все поры открыты).

Чем больше К н , тем выше доля открытых пор.

— величину средней () и истинной плотности взять из лабораторной работы №1 и №3;

— подсчитать значение общей пористости керамического кирпича ( П о );

— пользуясь данными, полученными в работе №6, определить открытую и закрытую пористость и коэффициент насыщения пор водой.

Данные занести в лабораторный журнал.

Коэффициент насыщения пор водой

, г/см 3

г/см 3

За окончательный результат принять среднее значение пористости из трех определений.

IV . Заключение : Полученные результаты пористости (не)входят в стандартные значения.

Вопрос 23. Определение марки керамического кирпича.

Марку керамического кирпича характеризуют пределом прочности при сжатии и изгибе испытанием образцов, отобранных по показателям внешнего вида. 10 шт. для испытания на сжатие и 5 шт. — на изгиб. Испытания провести в соответствии с ГОСТ 8462-85.

Предел прочности на сжатие определяют на образцах, состоящих из двух целых кирпичей или его половинок. Кирпичи или его половинки укладывают постелями друг на друга, последние поверхностями раздела в противоположные стороны.

Опорные поверхности кирпича пластического формования выравнивают цементным раствором, кирпич полусухого прессования испытывают насухо.

До испытания образцы выдержать трое суток в помещении при температуре 20 ±3 0 С и относительной влажности воздуха 60-80%.

Допускается выравнивание опорных поверхностей кирпича пластического формования с помощью прокладок из технического войлока, резинотканевых пластин, картона и других материалов.

Предел прочности при сжатии отдельного образца вычисляют по формуле:

,

где RСЖ – предел прочности при сжатии, МПа;

N – разрушающая нагрузка, Н;

А – площадь образца, м 2 ;

К – масштабный фактор для кирпича толщиной 88 мм, равен 1,2.

Среднее значение предела прочности вычисляют с точностью до 0,1 МПа как среднее арифметическое значение результатов испытания пяти образцов.

При вычислении предела прочности утолщенного кирпича (толщиной 88 мм) результаты испытаний умножаются на коэффициент 1,2.

При вычислении предела прочности кирпича, выровненного с помощью прокладок, применяют поправочный коэффициент, который находят опытным путем:

,

где R1 – среднее значение предела прочности при сжатии (изгибе) при испытании 50 образцов на цементном растворе;

R2 – среднее значение предела прочности при сжатии (изгибе) при испытании 50 образцов на прокладках.

Испытание кирпича на изгиб выполняют на целых кирпичах, как балок, свободно лежащих на двух опорах и нагруженных посередине пролета (рисунок 3).

Опоры должны быть расположены на расстоянии 200 мм друг от друга.

Рисунок 3. Схема испытания кирпича на изгиб

В местах опирания и приложения нагрузки поверхность кирпича пластического формования выравнивают цементным или гипсовым раствором или укладывают прокладки. Перед испытанием определяют размеры поперечного сечения кирпича с точностью до 1 мм.

Предел прочности на изгиб отдельного образца определяют по формуле:

RИЗГ=,

Читать еще:  Водопоглощение кирпича какое лучше

где RИЗГ– предел прочности при изгибе, МПа;

N– разрушающая нагрузка, Н;

l – расстояние между опорами, м;

b – ширина кирпича, м;

h– высота (толщина) кирпича, м.

За окончательное значение предела прочности на изгиб принимают среднее арифметическое значение из результатов испытаний 5 образцов, вычисленное с точностью до 0,05 МПа.

Если один из образцов имеет прочность, отличающуюся более, чем на 50% в большую или меньшую сторону от среднего значения, то этот результат не учитывается и принимается среднее арифметическое из четырех значений прочности.

Вопрос 24.Положительные и отрицательные качества древесины как конструкционного материала.

Среди природных видов сырья древесина занимает третье место после угля и нефти.

Важнейшими видами сырой (не подвергавшейся обработке) древесины являются бревна (пиломатериалы), слоистая древесина для производства древесностружечных и древесноволокнистых плит, а также шпон.

Древесина, имея волокнистое строение и большую пористость (30-80%), является гигроскопичным материалом и впитывает влагу из атмосферы. В зависимости от температуры и влажности воздуха между ним и древесиной устанавливается гигроскопическое равновесие, что определяет влажность древесины. Гигроскопическая влажность древесины составляет 30%.

Древесина характеризуется сравнительно высокой прочностью при любой плотности, небольшой теплопроводностью, легкостью обработки, простотой скрепления между собой отдельных элементов, высокой морозостойкостью и удовлетворительным сопротивлением действию многих химических реагентов. К недостаткам древесины относят гигроскопичность, загниваемость и возгораемость, анизотропность (неоднородность физико-механических свойств в разных направлениях), наличие пороков. Для оценки качества древесины как сырья для получения различных строительных конструкций изучают ее макро- и микроструктуру, определяют физические, механические и эксплуатационные свойства, а также пороки.

Положительные свойства древесины:

1. Низкая плотность: ель, сосна, липа, осина – 0,46–0,6 г/см3; береза, дуб, лиственница – 0,61–0,75 г/ см3; кизил – 0,91 г/см3

2. Высокая прочность. Древесина лучше всего работает на изгиб и имеет высокий коэффициент конструктивного качества (к.к.к.) характеризующий прочностную эффективность древесины.

3. Низкая теплопроводность. Коэффициент теплопроводности сухой древесины, в среднем составляет 0,16 – 0,30 Вт/м0С.

4. Высокая техничность древесины как строительного материала.

5. Красивое волокнистое строение.

6. Экологическая чистота.

Отрицательные свойства древесины:

4. Анизотропия свойств, вследствие волокнистой структуры.

Массовое водопоглощение керамического кирпича

Изобретение относится к производству строительных материалов и изделий, в частности к стеновому (строительному) и дорожному (мостовому) клинкерному кирпичу, получаемых на основе камнеподобного глинистого сырья — аргиллита и его разновидностей.

Кирпич клинкерный — это изделие, имеющее высокую прочность и низкое водопоглощение, обеспечивающее эксплуатационные характеристики в сильноагрессивной среде и выполняющее функции декоративного материала.

Стеновой клинкерный кирпич выпускается согласно ГОСТ 530-2012 «Кирпич и камень керамические. Общие технические условия» и предназначен для кладки стен, архитектурных элементов, цоколей, фундаментов, сводов, стен, подверженных большой нагрузке и т.д. Он должен иметь водопоглощение менее 6%, предел прочности при сжатии 30-100 МПа, предел прочности при изгибе — более 4,4 МПа, морозостойкость — не ниже F75.

Дорожный клинкерный кирпич выпускается согласно ГОСТ 32311-2012 «Кирпич керамический клинкерный для мощения» и предназначен для устройства дорог, тротуаров, пешеходных дорожек, архитектурно-декоративных ландшафтных элементов и т.д. Он должен иметь водопоглощение менее 2,5%, предел прочности при изгибе — более 7,5 МПа, морозостойкость — не ниже F200, истираемость — менее 1,5 г/см 2 .

В некоторых источниках в общем виде указывается на возможность получения изделий стеновой керамики на основе аргиллитов — «Временное руководство по проектированию предприятий по производству кирпича и керамических камней. Нормы технологического проектирования» (М., 1989), «Методические рекомендации по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых. Глинистые породы» (М., 2007). Однако конкретных рекомендаций, технологических параметров, свойств получаемых изделий в данных источниках не приводится.

Известна керамическая масса, включающая мас. %: аргиллиты — 69,0-74,8; диопсидсодержащая порода — 10-15; стеклобой — 9,5-10,5; гипс строительный — 4,92-5,1; алюминиевая пудра — 0,58-0,6; гидроксид натрия, 2 н. раствор — 29,6-30,0% сверх 100% от сухой смеси, В/Г — 0,42-0,45. Недостатком этой массы является сложный состав, низкая прочность и плотность изделий, и возможность их использования только как теплоизоляционных (см. патент RU 2484063 C1, С04В 38/02; 33/00, опубл. 10.06.13, бюл. 16).

Наиболее близким техническим решением является керамическая масса для изготовления строительного кирпича, включающая аргиллит, туфоаргиллит, железистый кек никелевого производства и воду при следующем соотношении компонентов, масс. %: аргиллит 15,35-17,85, туфоаргиллит 61,4-63,9, железистый кек 2,07-3,73, вода остальное (см. А.С. SU 1768555 A1, С04В 33/00, опубл. 15.10.92, бюл. 38).

Недостатком указанной массы является то, что данная керамическая масса склонна к вспучиванию при температурах обжига 1050-1100°С, изделия на ее основе обладают большим водопоглощением и относительно небольшой прочностью, что не позволяет на ее основе получить клинкерный кирпич.

Задачей изобретения является повышение прочности и снижение водопоглощения изделий, получение стенового и дорожного клинкерного кирпича, отвечающего требованиям нормативных документов на основе камнеподобного глинистого сырья (аргиллитов) за счет введения добавки апатитового концентрата.

Сущность изобретения достигается за счет того, что керамическая масса для изготовления клинкерного кирпича, включающая аргиллит и воду, дополнительно включает апатитовый концентрат при следующем соотношении компонентов, масс. %:

Технический результат заключается в следующем. Введение апатитового концентрата в тонкодисперсном состоянии способствует улучшению спекания формовочных масс и, соответственно, снижению водопоглощения и повышению прочности обожженных изделий. Это обусловлено тем, что апатитовый концентрат содержит в своем составе минерал апатит, краткая формула которого 3СаО⋅Р2О5. Данный минерал является сильным плавнем и минерализатором в процессе спекания. Минерализаторы — это вещества, вводимые в сырьевую смесь в небольшом количестве (от долей %) и активно участвующие в спекании и образовании новых минеральных фаз. Также апатитовый концентрат содержит в своем составе около 15% минерала — нефелин (K2O⋅3Na2O⋅2Al2O3⋅9SiO2). Высокое содержание оксидов щелочных металлов делает этот минерал сильным плавнем. Он начинает плавиться при температуре 950°С. Содержание оксида фосфора, оксида кальция и оксидов щелочных металлов в апатитовом концентрате обуславливает его эффективность как активизатора спекания даже при вводе в небольших количествах. Важным является момент, что ввод апатитового концентрата позволяет получить черепок с высокой степенью спекания при температурах до 1100°С. Особенно это важно для керамических масс с повышенным содержанием оксидов железа, какими и являются массы на основе аргиллитов и аргиллитоподобных глин. Это связано с тем, что при температурах выше 1100°С из оксида железа частично происходит удаление кислорода:

Читать еще:  Яма канализационная кладка кирпича

При этом черепок уже в значительной степени уплотнен, поэтому кислород не может свободно удалиться и содействует вспучиванию. Поэтому период спекания при конечных температурах должен проходить достаточно продолжительное время, а это влечет за собой увеличение размеров печей, повышенный расход топлива на обжиг, количества обжиговых вагонеток и т.д., что экономически нецелесообразно. Поэтому обжиг желательно проводить при температурах не выше 1100°С.

При степени измельчения менее 0,5-1,0 мм аргиллиты приобретают удовлетворительные формовочные свойства, способность к интенсивному спеканию при обжиге и к активному взаимодействию между слагающими компонентами, что способствует получению изделий с необходимыми свойствами. Повышенная природная плотность аргиллитов способствует повышенной плотности обожженных изделий, их низкой пористости и водопоглощению.

Характеристика исходных материалов

Аргиллиты — камнеподобные породы, не размокающие в воде, образующиеся в результате уплотнения и эпигенеза глин. По минеральному составу аргиллиты практически не отличаются от глин. Согласно ГОСТ 21216-2014 «Сырье глинистое. Методы испытаний» (п. 3.3) сырье глинистое камнеподобное — это плотные и хрупкие глинистые породы влажностью 3-9%, не размокающие или плохо размокающие в воде. К камнеподобному глинистому сырью относят уплотненные и аргиллитоподобные глины, аргиллиты, туфоаргиллиты, глинистые и углистые сланцы, алевролиты, а также переходные разновидности между этими породами. На практике, как правило, все эти породы называют аргиллитами.

В среднем глинистая составляющая аргиллитов представлена в большей мере гидрослюдами (в среднем 50-70%), каолинитом (20-30%), хлоритом (5-15%) и в небольшом количестве могут присутствовать смешаннослойные глинистые минералы. Помимо глинистых минералов в аргиллитах всегда присутствуют кварц, полевые шпаты, слюды, глауконит, опал, халцедон, оксиды железа и целый ряд акцессорных минералов. Часто аргиллиты обогащены углефицированным органическим веществом.

По химическому составу аргиллиты не имеют принципиальных отличий от гидрослюдистых и гидрослюдисто-каолинитовых глин. Усредненный химический состав характеризуется содержанием, % по массе: SiO2 52,0-64,0; AI2O3 15,0-24,0; Fe2O3 4,0-7,0; CaO 0,5-7,0; MgO 1,0-3,0; К2О 2,5-4,5; Na2O 1,0-2,0. Особенностями являются повышенное содержание оксида алюминия в сравнении с суглинками и оксидов калия и магния, что согласуется с минералогическим составом.

При измельчении аргиллиты приобретают формовочные свойства. Наблюдается прямая зависимость — чем тоньше измельчено сырье, тем выше пластичность и лучше формуемость. Применяемые технологии и используемое оборудование в настоящее время при производстве кирпича позволяют измельчать сырье до фракции 0-0,5 мм. Более тонкое измельчение существенно увеличивает затраты и экономически нерационально. Черепок на основе аргиллитов в сравнении с суглинками и глинами отличается повышенной плотностью и прочностью. Россия располагает крупнейшей сырьевой базой камнеподобного глинистого сырья, однако, несмотря на многие положительные свойства аргиллитов и их большую ценность как сырья для строительной керамики, они не нашли широкого применения в силу ряда объективных и субъективных причин.

2. Апатитовый концентрат.

Апатитовый концентрат является продуктом переработки апатит-нефелиновых руд, служит высококачественным фосфатным сырьем и используется в основном для производства минеральных удобрений и фосфорных соединений. Производится АО «Северо-Западная Фосфорная Компания». Всего согласно ТУ 2111-001-64700723-2014, производится три сорта апатитового концентрата, большая часть которого поставляется на российские химические предприятия. Массовая доля пентаоксида фосфора (Р2О5) в пересчете на сухое вещество составляет 38,0-39,0%. Содержание собственно апатита составляет 84-86%. Также в количестве до 15% присутствует нефелин. Зерновой состав на 95% представлен фракцией 0-0,315 мм, при содержании фракции 0-0,16 мм составляет 70-90%. Апатитовый концентрат — негорючее вещество, пылевоздушные смеси пожаровзрывобезопасны.

Пример. Для экспериментальной проверки заявляемых составов масс были изготовлены стандартные образцы кирпича полнотелого размером 250×120×65 мм и 200×100×62 мм с различным соотношением вышеперечисленных компонентов. В качестве сырья был использован типичный аргиллит Южночеревковского месторождения Ростовской области.

Образцы изготовлялись следующим образом.

Предварительно камнеподобная глинистая порода — аргиллит — измельчалась на щековой дробилке, молотковой дробилке и дезинтеграторе, после чего просеивалась на ситах с заданным размером ячеек до максимальной крупности частиц менее 1 мм. При этом содержание фракции 0-0,5 мм составляло не менее 80%. Затем измельченный аргиллит тщательно перемешивался с апатитовым концентратом в заданном соотношении компонентов и равномерно увлажнялся до нормальной формовочной влажности, которая составляла в среднем 16%. Приготовленная смесь вылеживалась в условиях, исключающих высыхание в течение 6-12 часов, и затем из нее формовались изделия. После сушки в течение 48 часов изделия обжигались с выдержкой при максимальной температуре 1050 и 1100°С 4 часа.

Физико-механические показатели, подтверждающие свойства изделий, полученных на основе керамических масс, включающих аргиллит и апатитовый концентрат, представлены в таблице.

Результаты проведенных испытаний показали, что введение апатитового концентрата более 5,5% не приводит к существенному улучшению свойств изделий и по технико-экономическим причинам это нецелесообразно, так как необходимые свойства изделий уже получены. Без добавки апатитового концентрата получить дорожный клинкерный кирпич нельзя, а стеновой — только при температурах выше 1100°С. Полученные образцы изделий отвечают необходимым требованиям по морозостойкости, а для клинкерного кирпича и по истираемости и кислотостойкости (>95%).

Основные свойства строительных материалов

Министерство образования и науки Российской Федерации

ЮГОРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Инженерный факультет

Кафедра «Строительные технологии и конструкции»

Читать еще:  Водопоглощение кирпича что это такое

ОСНОВНЫЕ СВОЙСТВА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

(плотность, пустотность, пористость, водопоглощение, влажность, прочность, размягчение, морозостойкость).

«Экономика и управление на предприятии строительства» (060800)

Структура лабораторной работы………………………………………

Общая классификация основных свойств…………………………….

Лабораторная работа №1

Определение истинной и средней плотности……………………….

Определение истинной плотности кирпича……………………………………

Определение средней плотности материалов…………………….…..

Образец материала правильной формы……………………………….

Образец неправильной формы…………………………………….….

Определение насыпной плотности материалов………………………

Лабораторная работа №3

Пористость и водопоглощение строительных материалов…………..

Лабораторная работа №4

Определение влажности строительных материалов………………….

Лабораторная работа №5

Прочность строительных материалов…………………………………

ЧАСТЬ 1. Определение прочности при сжатии и коэффициента конструктивного качества………………………………………….….

ЧАСТЬ 2. Определение коэффициента размягчения…………….…..

ЧАСТЬ 3. Определение предела прочности при изгибе…………….

Лабораторная работа № 6

Определение марки по морозостойкости…………………………….

Цель настоящей работы – приобретение студентами навыков работы с лабораторным оборудованием, освоение ими современных методов определения основных свойств строительных материалов и умение оценить правильность полученных результатов.

1. ОБЩИЕ ПОЛОЖЕНИЯ

К выполнению лабораторной работы допускаются студенты, изучившие содержание работы по соответствующим методическим указаниям и представившие конспект отчета по работе с необходимыми лабораторными журналами. Конспект отчета составляется в соответствии со структурой лабораторной работы.

1.1. Структура лабораторной работы

1.1.1. Наименование темы лабораторной работы. Оно должно выполняться четко и выделяться из основного текста.

1.1.2. Цель лабораторной работы – это наименование определяемого свойства; метод, используемый в работе; оценка правильности полученных результатов.

1.1.3. Теоретическая часть. Приводятся основные определения изучаемых в данной работе свойств строительных материалов, вывод расчетных формул, единицы размерности определяемых констант.

1.1.4. Материалы и оборудование, реактивы.

Излагается ход работы в достаточно краткой форме с указанием последовательности выполнения операций.

1.1.6. Лабораторный журнал.

В него вносятся все опытные данные и полученные на их основании расчетные величины. Лабораторный журнал составляется таким образом, чтобы можно было осуществлять табличный метод расчета.

1.1.7. Расчетная часть.

Расчетная часть присутствует в том случае, когда необходимо провести вспомогательные расчеты-пояснения, не вошедшие в лабораторный журнал.

Делается вывод о правильности полученных результатов путем сравнения их со стандартными значениями определяемых в лабораторной работе констант, приведенных в специальной литературе или указанных в ГОСТе.

ОБЩАЯ КЛАССИФИКАЦИЯ ОСНОВНЫХ СВОЙСТВ:

– физические свойства (плотность, пористость, водопоглащение, влажность, теплопроводность, морозостойкость и др.);

– механические свойства (прочность, твердость, истираемость, сопротивление удару и др.);

– деформативные свойства (пластичность, упругость, ползучесть и др.);

– химические свойства (щелочеустойчивость, кислотостойкость, биостойкость и др.);

– технологические свойства (свариваемость, гвоздимость, пластичность, спекаемость и др.).

Лабораторная работа № 1

Определение истинной и средней плотности

Плотность – это масса материала в единице объема.

В зависимости от степени уплотнения частиц материала различают:

Истинную плотность, когда в единице объема масса материала находится в абсолютно плотном состоянии (без пор и пустот)

rи=, г/см3 , где

rи – истинная плотность, г/см3;

m – масса материала в абсолютно уплотненном состоянии, г;

Vа – объем материала в абсолютно плотном состоянии;

V – объем материала в естественном состоянии;

Vп – объем пор, заключенных в материале.

Среднюю плотность, или просто плотность, когда масса материала в единице объема находится в естественном состоянии (с порами и пустотами)

rо=, г/см3 , где

rо – средняя плотность, г/см3;

mо – масса материала в естественном состоянии, г.

Насыпную плотность, когда масса материала в единице объема находится в насыпном состоянии (в насыпной объем включены межзерновые пустоты);

rн=, г/см3 , где

rн – насыпная плотность, г/см3;

mн – насыпная масса материала, г;

Vн – насыпной объем, см3.

Насыпную плотность определяют как в рыхлонасыпном состоянии, так и в уплотненном. В первом случае материал засыпается в сосуд с определенной высоты, во втором – уплотняется на виброплощадке (30-60 сек). Из вышеизложенного следует, что в единице объема для данного материала

m > mо > mн и rи > rо > rн

Относительная плотность – это безразмерная величина, равная отношению средней плотности материала к плотности воды при 4°С, равной – 1 г/см3

d= , где

d – относительная плотность;

rо – средняя плотность, г/см3;

rв – плотность воды при 4°С, 1 г/см3.

Эта величина учитывается в некоторых эмпирических формулах.

Цель работы: ознакомиться с сущностью понятий «плотность» истинная и средняя и методами их определения для образцов правильной и неправильной геометрической формы. Научится оценивать правильность полученных результатов.

1. Определение истинной плотности кирпича

Материалы: навеска размолотого в порошок керамического кирпича массой около 70 г, дистиллированная вода.

Приборы и приспособления: весы лабораторные технические, стандартный объемомер (колба Ле Шателье), стеклянная палочка, стеклянные (фарфоровые) стаканы вместимостью 100 и 500 см3; сухая салфетка.

1. Пробу тонкоразмолотого кирпича (размер частиц должен быть менее размера пор в кирпиче) массой около 70 г поместить в стаканчик и взвесить на технических весах с погрешностью не более 0,05 г.

2. В объемомер (рис. 1.1) налить воду до нижней риски, нане­сенной до расширения на горле колбы. Горло объемомера подсушить фильтровальной бумагой (или тряпочкой). Затем порошок кирпича из взвешенного стакана осторожно с помощью стеклянной палочки пересыпать в объемомер до тех пор, пока уровень воды не поднимется до верхней метки (потери порошка недопустимы). Объем засыпанного порошка Vп равен объему между верхней и нижней метками объемомера (20 или 10 см3) и указан на объемомере.

3. Массу порошка кирпича (г), засыпанного в объемомер, определить, взвешиванием остатка порошка в стакане m2 и вычислить ее как разность масс (m1–m2)

Истинную плотность (г/см3) рассчитать по формуле

Рис 1.1. Объемомер Ле Шателье

1 – объемомер; 2 – сосуд с водой; 3 – термометр.

Все результаты занести в лабораторный журнал.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector